1月17日,黄俊杰教授课题组在锂离子电池有机负极材料领域取得了新的进展,在Journal of Power Sources期刊上发表了“Synthesis of biphenyl-linked covalent triazine frameworks with excellent lithium storage performance as anode in lithium ion battery”的研究论文(https://doi.org/10.1016/j.jpowsour.2022.231041)。该研究是继2021年10月在ACS Applied Materials & Interfaces期刊发表对有机电极材料研究工作(DOI: 10.1021/acsami.1c14838)的又一进展,探索了联苯体系的共价三嗪有机框架化合物(CTF-2)负极材料的电化学储锂性能以及电化学反应机理,为深入了解CTFs材料的结构-性能关系以及不同共轭体系和孔径的CTFs材料对电化学性能的影响研究提供了有效借鉴。
图1 CTFs-1-400材料的超锂化存储机制
该研究通过两步合成法制备了具有刚性骨架结构、扩展共轭链和多孔结构的联苯体系的共价三嗪有机框架化合物(CTF-2),并首次作为锂离子电池(LIBs)的负极材料进行了研究。与传统单苯体系的CTFs材料不同,CTF-2中的联苯链可以扩大孔径,促进Li+扩散,从而进一步促进芳香六元环的超锂化性能的实现,即促进芳香六元环(苯环与三嗪环)的Li6C6/Li3C3N3储锂机制。此外,联苯单元扩展的共轭链可以赋予其大量的储锂活性位点,同时改善框架内部的电荷分布,从而有效地稳定充放电过程中产生的自由基中间体。基于以上优势,CTF-2负极材料在LIBs中展现出了极高的储锂比容量,卓越的循环稳定性以及优越的倍率性能。在0.1 A g-1的电流密度下循环100圈后,CTF-2负极表现出了1527 mAh g-1高可逆储锂比容量,这意味着每个CTF-2的重复单元可以实现13.2个Li+的存储,接近于完全实现超锂化性能的储锂比容量,其超锂化机制利用原位红外进行了进一步的验证,芳香环(即苯环与三嗪环)特征峰在充放电过程中的可逆变化表明其可以作为电化学活性位点来进行锂离子的存储。此外,具有扩展孔径的CTF-2负极在1 A g-1的高电流密度下循环500圈后,依旧可以保持1323 mAh g-1的可逆储锂比容量,即使在10 A g-1,CTF-2负极的储锂比容量也可以达到463 mAh g-1。具有优异电化学性能的CTF-2材料为设计和合成高性能LIBs有机电极提供了新的研究思路。
《Journal of Power Sources》(IF = 9.127)为化学与物理电源(即电化学电池与太阳电池)综合技术类的权威期刊,中科院期刊分区为一区。
Abstract: Covalent triazine frameworks (CTFs) with rigid triazine linkages and rich molecular pores are viewed as the promising electrode materials, which have the great possibility to tackle the issues including poor structural stability, sluggish ion/electron diffusion and low capacity of conventional organics. In this study, the biphenyl-based CTFs (CTF-2) has been synthesized and proposed as lithium storage material for the first time. Notably, a superlithiation performance is achieved in CTF-2 with almost 4.4 Li+ storage in each aromatic ring (benzene or triazine ring), delivering a capacity of 1527 mAh g-1 at 0.1 A g-1. As found in In-situ Fourier Transform infrared spectra (FTIR), the superlithiation of CTF-2 is mainly contributed by the reversible transfer of electrons in aromatic rings, which results in the reversible variations in the peak intensity during the charge/discharge process. Furthermore, CTF-2 exhibits an admirable cycling stability with the capacity of 1321 mAh g−1 over 500 cycles at 1 A g-1, and a superior rate capability with the capacity of 463 mAh g-1 at 10 A g-1. The prominent electrochemical performance can be owned to the structural stability, porous structures and the rich electrochemical active sites of CTF-2.
该工作得到国家自然科学基金(21875142)经费资助。
文字:徐绍金 编辑:王建娟